Models from Code Logging in MLflow - What, Why, and How
We all (well, most of us) remember November 2022 when the public release of ChatGPT by OpenAI marked a significant turning point in the world of AI. While generative artificial intelligence (GenAI) had been evolving for some time, ChatGPT, built on OpenAI's GPT-3.5 architecture, quickly captured the public’s imagination. This led to an explosion of interest in GenAI, both within the tech industry and among the general public.
On the tools side, MLflow continues to solidify its position as the favorite tool for (machine learning operations) MLOps among the ML community. However, the rise of GenAI has introduced new needs in how we use MLflow. One of these new challenges is how we log models in MLflow. If you’ve used MLflow before (and I bet you have), you’re probably familiar with the mlflow.log_model() function and how it efficiently pickles model artifacts.
Particularly with GenAI, there’s a new requirement: logging the models "from code", instead of serializing it into a pickle file! And guess what? This need isn’t limited to GenAI models! So, in this post I will explore this concept and how MLflow has adapted to meet this new requirement.
You will notice that this feature is implemented at a very abstract level, allowing you to log any model "as code", whether it’s GenAI or not! I like to think of it as a generic approach, with GenAI models being just one of its use cases. So, in this post, I’ll explore this new feature, "Models from Code logging".
By the end of this post, you should be able to answer the three main questions: 'What,' 'Why,' and 'How' to use Models from Code logging.
